
International Journal of Theoretical Physics, Vol. 38, No. 11, 1999

Gamow Vectors and Time Asymmetry

M. Castagnino,1 M. Gadella,2 F. Gaioli,1 and R. Laura3

Received March 9, 1999

We prove that Gamow vectors are important tools in the quantum theory of
irreversibility. We use the mathematical formalism of rigged Hilbert spaces. We
discuss some spectral formulas that include Gamow vectors as well as some
results concerning Gamow vectors. The role of the time-reversal operator is
studied. The formalism can be applied to formulate a sense of irreversibility
in cosmology.

1. INTRODUCTION

This is a paper on time asymmetry, cosmology, and quantum mechanics.
Time asymmetry is usually explained in two different ways. The first one

and most popular lies at the level of statistical mechanics. A coarse graining
is introduced, some approximations are usually made, and a master equation

is obtained [1±3]. However, this method is somehow arbitrary since there is

no general rule to define which should be considered as the relevant system

and which should be considered as the irrelevant bath or reservoir.
Our intention is to discuss some particular aspects of a formalism which

is, in principle, free of this ambiguity. This formalism has its origin in some

ideas due to I. Prigogine and A. Bohm, who have worked independently

[4±10]. In particular, I. Prigogine and coworkers use the term intrinsic irre-
versibility in this context to underline that this formalism describes irrevers-

ibility in physics at a fundamental level.
The idea behind the formulation of intrinsic irreversibility lies in the

fact that the group giving the time evolution of certain systems with reversible

equations of motion (for instance, e 2 itH for nonrelativistic quantum systems

or U n for chaotic maps, where U is the Frobenius±Perron operator, etc.)
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splits, in the presence of resonances into two semigroups that act in different

spaces. One of these two spaces accounts for the processes in the past, the

other for the future processes. This implies the existence of a time arrow
which points to the past in the past space and to the future in the future

space. This means that time symmetry can be broken in intrinsically irrevers-

ible systems and, hence, a time asymmetry can be introduced canonically.

In the case of nonrelativistic quantum systems with resonances, the

spaces of pure quantum states for the past and the future are not represented

as Hilbert spaces, but instead we equip the original Hilbert space of states
with new spaces. One of these contains the past processes, the other the

future processes. These are time symmetric with regard to one another and

are related through a time-reversal operator. Each would therefore correspond

to an arrow of time.

The choice of the new spaces and, hence, of the arrow of time can be

based on cosmological considerations. In fact, if we assume that the universe
is a time-orientable manifold in which we have chosen an orientation (that

of the future), this choice will single out one of these two possible spaces.

The choice of an arrow of time can also be illustrated by means of the

use of Reichenbach diagrams [11, 45]. We can consider all regular states as

outgoing states in a Reichenbach diagram. These outgoing states would live
in the new states corresponding to the future.

In order to illustrate the formalism of time asymmetry, we focus on

nonrelativistic quantum systems with resonances in order to obtain conse-

quences of our analysis relavant to cosmology. In this case, we have a Hilbert

state of pure states * and we equip it with a dual pair. A dual pair is formed

by two vector spaces: a given topological vector space F and its dual F 3

(the vector space of continuous antilinear functionals on F ), such that the

following relation holds:

F , * , F 3 (1.1)

Such spaces are called rigged Hilbert spaces (RHS) and their properties

are summarized in Appendix A. We shall use the following notation for the
space corresponding to the past

F + , * , ( F +) 3 (1.2)

and for the space corresponding to the future

F 2 , * , ( F 2
) 3 (1.3)

Quantum resonance phenomena illustrate the need for this double equip-

ping of the Hilbert space of states. In fact, resonance scattering represents

two processes. One is the creation of the resonance (growing or capture

process), which takes place in (1.2), the decay in (1.3). The need for these
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extensions of the Hilbert space can be made obvious if we introduce the

Gamow vectors or vector states for the exponentially growing or decaying

part of the resonance. As is well known, these Gamow vectors cannot be
represented by a well-behaved square-integrable wave function, but can be

defined as proper functionals on the spaces F 6 and hence as elements in

( F 6 ) 3 . In the present paper, we shall introduce a new type of Gamow vector

and discuss the role played by Gamow vectors in time-asymmetric quantum

mechanics and cosmology.

Of the tools we shall use, two are of particular importance: analytic
continuation of the wave functions in the energy representation, making use

of Hardy functions on a half-plane of the complex plane C , and rigged Hilbert

spaces [8±12 ]. We have already shown that rigged Hilbert spaces are used

in order to equip the Hilbert space of states. Due to causality conditions [13],

the extensions, are constructed using Hardy functions, which are defined in

Appendix B, where we also give some of their most interesting properties.
We present a formulation of decay phenomena such that the spaces F 6

(which represent the closure of the linear spaces of physically realizable state

vectors with respect to a topology stronger than the Hilbert space topology)

can be represented by means of spaces of entire analytic functions in the

energy representation. This choice is based on the following ideas:
1. We would like to represent the spaces F 6 on spaces of functions

having the maximun possible analyticity in order to use contour integrations

in our calculations.

2. The kind of structures under study and, in particular, our new Gamow

vectors require larger spaces ( F 6 ) 3 . This can be obtained with smaller F 6 .

It is necessary, however, to remark that the functions in the representation
spaces for F 6 also must be Hardy on the upper half-plane (for F 2 ) and the

lower half-plane (for F 2 ) in order to fulfill certain causality conditions [13 ].

One of the objectives of this formulation is to show how the presence

of poles of the analytic continuation to the second sheet of the Riemann

surface, associated with the transformation E 5 p2, of the S-matrix in the

energy representation allows us to find the manifestation of the existence of
an arrow of time. Under certain general conditions in the classical case, these

poles can be related to resonances [8, 9 ].

We also discuss a generalization of quantum mechanics which preserves

as much as possible the features of the standard formalism. In particular, we

use the notions of generalized state vectors and their brackets. In particular

the latter has been absent in previous treatments [8±10].
The general mathematical framework for such a description is the theory

of rigged Hilbert spaces (RHS). RHS were invented by Gel’ fand [14 ] and

its properties studied by Gel’ fand [14], Maurin [15, 16], and others [17, 18 ].

Its use for a rigorous implementation of the Dirac formulation of quantum
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mechanics has been proposed by Antoine [19 ], Bohm [20, 21 ], Roberts [22 ],

and Melsheimer [18]. Rigged Hilbert spaces of analytic functions have also

been used to describe decay and resonant behavior [23, 9, 10]. Gamow
vectors, defined as exponentially decaying and growing state vectors, can be

rigorously defined in this context [8, 10, 24 ]. Then the RHS description of

decay serves as a mathematical basis to show an arrow of time [8, 25].

Thus, one could find the basis of a quantum theory of irreversibility on this

description. Nevertheless, one should note that the mathematical theory of

RHS does not rigorously describe certain particular aspects of the formalism
we want to discuss. In fact, certain objects that we wish to introduce, like

the ª normº of the Gamow vectors as well as certain ª scalarº products and

ª Dirac deltas,º have not been rigorously defined, since they are essentially

products of distributions. Thus, one of our objectives is to show the need for

completing the mathematical theory of operators on RHS.

The definition and main properties of RHS (also called Gel’ fand triplets),
including the important Nuclear Spectral Theorem or Gel’ fand±Maurin theo-

rem, which is the basis for the RHS implementation of the Dirac formalism,

are presented in Appendix A.

We begin with a Hilbert space * and a self-adjoint operator H on *,

which represents the Hamiltonian of a given physical system. Usually, the
Hamiltonian can be decomposed into a ª freeº part H 0 plus an interaction,

which is usually given by a potential V, so that

H 5 H 0 1 V (1.4)

In order to simplify the problem under discussion, we make the follow-

ing assumptions.
1. The free Hamiltonian H 0 is unitarily equivalent to the multiplication

operator % on L2( R +) (this is the space of square-integrable functions with

respect to the Lebesgue measure on the positive part of the real line):

%f( v ) 5 v f( v ) for all v P R + (1.5)

In particular, this means that H 0 has continuous spectrum, s (H 0) 5 R + 5
[0, ` ) only, and is not degenerate. This nondegeneracy hypothesis is not

essential here, but introduce it for simplicity in the notation. Dropping this

hypothesis means that f( v ) in (1.5) depends on some other variables.

2. The Mù ller wave operators V 6 , also called scattering operators, exist.

Furthermore , we assume asymptotic completeness [26, 27 ]. Thus, H and H 0

are related by H 5 V 6 H 0V ²
6 . As a consequence, the continuous spectrum of

H is R + 5 [0, ` ) and is not degenerate. Also, the S operator (S matrix) exists

and is unitary.

3. The S operator in the energy representation, S( v ), has an analytic

continuation to the two-sheeted Riemann surface associated with the transfor-
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mation w 5 h 2. We also assume that the analytic continuation of S( v ) to the

second sheet, given by SII(z), has as only singularities a finite number of

pairs of simple poles, located at the points zj 5 v j 2 i G j /2 and z*j 5 v j 1
i G j /2 with v j . 0, g j . 0, j 5 1, 2, . . . , N. Eventually, one may also have

simple poles on the negative part of the real axis (second sheet). One can

always construct a one-dimensional model with these properties by using the

Gel’ fand±Levitan theory [28 ]. For the sake of simplicity, we will assume the

presence of only one pair of poles located zR 5 v R 6 i G R /2 with v R . 0

and G R . 0. The function SII( v ) is polynomially bounded at infinity. This
happens in some realistic models [29 ] having spherically symmetric, finite-

range potentials. The cut of the Riemann surface has two rims. On each of

the rims the values of the function S( v ) are well defined as the limits of S(z)
as Im z ® 0 and Re z . 0 from the upper half-plane and lower half-plane,

respectively (first sheet). We denote these values as S( v 6 i0).

2. ANALYTIC CONTINUATIONS

Let us consider the two rigged Hilbert spaces

D 6 , *2
6 , D 3

6 (2.1)

as defined in Appendix B. By *2
6 we denote the spaces of Hardy functions

on the {upper
lower} half-plane. The functions in D 6 are entire analytic on each

sheet of the Riemann surface associated with the transformation v 5 h 2 (and

on the whole Riemann surface itself, the function on one sheet being identical
to the function on the other), where v represents the energy (see Appendix

B). In addition, they are Hardy functions on the {upper
lower} half-plane on both

sheets. Since we are only interested in the behavior of our functions on the

second sheet, we will work on this sheet only.

The values that any function on *2
6 takes on the real axis determine all

the values of the function. The same property is true for the values on the

positive part of the real axis R +, after the van Winter theorem [30]. Thus, if

we define the following mappings for any f 6 P *2
6

u 6 : f 6 j f 6 ) R 1 (2.2)

(the latter symbol means the restriction of these functions to R +), they are

one to one onto linear mappings. Let us call G 6 the images of D 6 by u 6 .

One can transport the topological properties from D 6 to G 6 with u 6 and

show that the triplets

G 6 , L2( R +) , G 3
6 (2.3)

are rigged Hilbert spaces.
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According to our assumptions, H 0 is unitarily equivalent to the operator

multiplication % on L2( R +). It is rather simple to show that if f 6 ( v ) P G 6 ,

then %f 6 ( v ) 5 v f 6 ( v ) P G 6 , so that the operator % leaves G 6 invariant.
One can also show that % is a continuous mapping from G 6 into themselves.

In the preceding section, we assumed that H 0 and % are unitarily equiva-

lent. Then, there must exist a unitary operator U: * j L2 ( R +) with H 0 5
U 2 1%U. Next, we define the following spaces:

1. F 6 5 U 2 1 G 7 . Since U 2 1 is a one-to-one mapping from G 7 onto F 6 ,

it can transport the topological properties from G 7 to F 6 . Thus,

F 6 , * , F 3
6 (2.4)

are rigged Hilbert spaces.

2. F 6 5 V 6 F 6 . This provides a new pair of RHS:

F 6 , *ac , ( F 6 ) 3 (2.5)

Here, *ac is the absolutely continuous Hilbert space of the total Hamilto-

nian H. This is defined as the orthogonal complement of the Hilbert space

spanned by the bound states of H (we assume the absence of continuous

singular spectrum). According to our hypothesis, the restriction of H to *ac

has nondegenerate continuous spectrum given by R +. We recall that, according
to our hypothesis of asymptotic completeness, we have *ac 5 V +* 5 V 2 *.

The operators H 0 and H leave invariant the spaces F 6 and F 6 , respec-

tively. Furthermore, they are continuous on the spaces they leave invariant.

The second version (see Appendix A) of the Gel’ fand ± Maurin theorem says

that there exist complete sets of generalized eigenvectors ) v 6 & P F 3
6 of H 0

and ) v 6 & P ( F 6 ) 3 of H, where v runs out R +. One can also find the

relation [10]

) v 6 & 5 V 6 ) v 6 & ; v P R + (2.6)

which is known as the Lippmann ± Schwinger equation. Certain formal expres-
sions can also be found:

H 0 5 #
`

0

v ) v 6 & ^ v 6 ) d v ; I 5 #
`

0

) v 6 & ^ v 6 ) d v (2.7)

Rigorously speaking, this I is the identity mapping from F 6 into F 3
6 . Similar

expressions are

H 5 #
`

0

v ) v 6 & ^ v 6 ) d v ; I 5 #
`

0

) v 6 & ^ v 6 ) d v (2.8)

Here, I should be looked at as the identity mapping from F 6 into ( F 6 ) 3 .
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Since ) v 6 & are generalized bases for F 6 as v P R +, being given a

vector f 6 P F 6 , one can write

f 6 5 ) f 6 & 5 #
`

0

^ v 6 ) f 6 & ) v 6 & d v 5 #
`

0

f 6 ( v ) ) v 6 & d v (2.9)

One can show [11 ] that the wave function f 6 ( v ) belong to G 6 , respectively.

We recall that ^ v 6 ) f 6 & 5 ^ f 6 ) v 6 & * 5 f 6 ( v ). Similar expressions are valid
for w 6 5 ) w 6 & P F 6 . The next three formulas are valid with the plus and

minus signs either as superindices or as subindices and therefore we omit

them. The square of the norm of some vector ) f & (in F 6 or in F 6 ) is given by

^ f ) f & 5 #
`

0

^ f ) v & ^ v ) f & d v 5 #
`

0

) f ( v ) ) 2 d v (2.1 0)

We can also use the bra notation:

^ c ) 5 #
`

0

^ c ) v & ^ v ) d v 5 #
`

0

c *( v ) ^ v ) d v (2.11)

and

^ c ) c & 5 #
`

0

^ c ) v & ^ v ) c & d v 5 #
`

0

) c *( v ) ) 2 d v (2.12)

Warning. Note that the above formulas can be written for the elements

of F 6 or F 6 and not for all the elements of * or *ac as currently assumed.

This is a consequence of the Gel’ fand±Maurin theorem. For different reasons,

the expression

) v + & 5 S( v ) ) v 2 & (2.13)

is not true in the present context. We will discuss this point later.

Now, let f 6 P F 6 . The function on R + given by f 6 ( v ) 5 ^ v 6 ) f 6 & 5
^ f 6 ) v 6 & * belongs to G 6 . This means that f 6 ( v ) admits an analytic continua-

tion to an entire function which is, in addition, a Hardy function on the

{upper
lower} half-plane. Let z be any complex number. Then, the mapping

F 6 : F 6 j C such that F 6 ( f 6 ) 5 [f 6 (z*) ]* (2.14)

is antilinear and continuous on F 6 and hence it belongs to ( F 6 ) 3 . Antilinearity
is obvious. Continuity is proven in Appendix C. In the Dirac notation, we

write F 6 ( f 6 ) 5 ^ f 6 ) z 6 & 5 ^ z 6 ) f 6 & *, so that ) z 6 & and F 6 represent the same

functional. The same kind of considerations can be made for f 6 P F 6 . For

f 6 , one has
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[f 6 (z*) ]* 5 ^ f 6 ) z 6 & Û f 6 (z*) 5 ^ z 6 ) f 6 & Û f 6 (z) 5 ^ z 6 ) f * 6 & (2.15)

Now, let us take w and f both in the same of any of the spaces F 6 or

F 6 . Let us omit for a moment the 6 signs for simplicity. Consider the

following scalar product:

^ w ) f & 5 #
`

0

w *( v ) f ( v ) d v (2.16)

If w ( v ) P G 6 , then w *( v ) P G 7 . However, if w (z) is analytic, w *(z) is not.

The analytic continuation of w *( v ) is given by w *(z*), sometimes also called

w #(z). Obviously, w #( v ) 5 w *( v ) if v is real and the above scalar product

can be written as

^ w ) f & 5 #
`

0

w #( v ) f ( v ) d v (2.17)

The path of integration can now be deformed (see Fig. 1) to G so that

^ w ) f & 5 # G

w # (z) f (z) dz 5 # G

^ w ) z & ^ z* ) f & dz (2.18)

The second identity in (2.18) comes from (2.15). By analogy with (2.7) and

(2.8), we can now write the following formula (now recovering the indices 6 ):

Fig. 1.
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I 5 # G
) z 6 & ^ z* 6 ) dz (2.19)

As we will prove in the next section, H ) z 6 & 5 z ) z 6 & and ^ z 6 ) H 5 z* ^ z 6 ) .
Thus, formula (2.19) gives

^ w 6 ) H f 6 & 5 # G

^ w 6 ) z 6 & ^ z* 6 ) H f 6 & dz 5 # G

z ^ w 6 ) z 6 & ^ z* 6 ) f 6 & dz (2.2 0)

This expression can be obtained in an equivalent way if we write (omitting

again the indices 6 )

^ w ) H f & 5 #
`

0

w #( v )(H f )( v ) d v (2.21)

5 #
`

0

^ f ) v & ^ v ) H f & d v 5 #
`

0

v ^ f ) v & ^ v ) f & d v (2.22)

5 #
`

0

v w #( v ) f ( v ) d v 5 # G

z w #(z) f (z) dz

5 # G

z ^ w ) z & ^ z* ) f & dz (2.23)

and can be written as

H 5 # G

z ) z 6 & ^ z* 6 ) dz (2.24)

Certain formal manipulations involving (2.19) and (2.24) are coherent

with these results. For instance,

H ? I 5 # G

H ) z 6 & ^ z* 6 ) dz 5 # G

z ) z 6 & ^ z* 6 ) dz (2.25)

I ? H 5 # G
) z 6 & ^ z* 6 ) H dz 5 # G

) z 6 & ^ z* 6 ) z dz (2.26)

Some kinds of formal scalar products between generalized eigenvectors
of H are meaningful in a distributional sense. For instance, if we multiply

the second integral in (2.7) to the left by ^ f 6 ) and to the right by ) v 8 6 & , we get

^ f 6 ) v 8 6 & 5 #
`

0

^ f 6 ) v 6 & ^ v 6 ) v 8 6 & d v Þ ^ v 6 ) v 8 6 & 5 d ( v 2 v 8) (2.27)

This delta is well defined as some kind of distribution. Proceeding by analogy,

if z8 P G , we have
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^ f 6 ) z8 6 & 5 # G

^ f 6 ) z 6 & ^ z* 6 ) z8 6 & dz (2.28)

As a result, one has

^ z* 6 ) z8 6 & 5 d G (z 2 z8) (2.29)

and formula (2.28) can be looked at as the definition of the delta function
in (2.29).

3. BEHAVIOR OF ) z 6 & AND EVOLUTION THEOREMS

The purpose of this section is to study the time evolution of the general-

ized vectors ) z 6 & . This study has already been made in a situation in which

the wave functions f 6 ( v ) of the vectors f 6 P F 6 admit analytic continuation

on a half-plane only [11]. Now, we will work with entire functions, which
will produce an enriched mathematical structure.

First of all, we want to show that

H ) z 6 & 5 z ) z 6 & (3.1)

i.e., ) z 6 & is a right eigenvector of H with eigenvalue z.
In order to obtain this result, we have to use the definition of generalized

eigenvector given in Appendix A. According to this definition, we have to

show that

^ H f 6 ) z 6 & 5 z ^ f 6 ) z 6 & , " f 6 P F 6 (3.2)

The proof of (3.2) is simple. Take an arbitrary v P R
+. Then, the

Gel’ fand±Maurin theorem gives H ) v 6 & 5 v ) v 6 & (see Appendix A). This

means that, for any f 6 P F 6 , one has

^ H f 6 ) v 6 & 5 v ^ f 6 ) v 6 & 5 v [f 6 ( v ) ]* (3.3)

The analytic continuation of the functions in (3.3) gives, at any complex

z, the following value:

^ H f 6 ) z 6 & 5 z [f 6 (z*) ]* 5 z ^ f 6 ) z 6 & (3.4)

which proves (3.2).

We can also study the time evolution of the generalized eigevectors ) z 6 & .
In order to do it, we need to recall how to construct the extensions to the

duals of non-self-adjoint operators on a rigged Hilbert space. Let F , * ,
F 3 be a rigged Hilbert space and U an operator on * fulfilling the follow-

ing properties:

1. The Hilbert space adjoint adjoint of U, U ² , leaves F invariant, i.e.,

U ² F , F .
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2. U ² is continuous on F .

Then, there is a unique extension of U by continuty to F 3 . This is

defined by

^ U ² w ) F & 5 ^ w ) UF & , " w P F and all F P F 3 (3.5)

Therefore, in order to find the time evolution of ) z 6 & , we have first to

the following:

(i) For t . 0, eitH leaves the space F 2 invariant and is continuous on

it. On the other hand, for any t , 0, eitH does not leave F 2 invariant. Note

that eitH is the Hilbert space adjoint of the evolution operator e 2 itH. For this

reason, e 2 itH is well defined in the dual ( F 2
) 3 for t . 0 and not for t , 0.

(ii) For t , 0, eitH leaves invariant F + and is continuous on it. For any

t . 0, eitH does not leave F + invariant. Therefore, e 2 itH is well defined on

( F +) 3 for t , 0 and not for t . 0.

Proofs of (i) and (ii) are rather technical and not very different from the

proofs for the similar situation described in ref. 10 p. 80.

Thus, the usual group giving the time evolution of a quantum state e 2 itH

splits into two semigroups:

1. e 2 itH acting on ( F 2
) 3 for t . 0 only.

2. e 2 itH acting on ( F +) 3 for t , 0 only.

Note that for t . 0, e 2 itH acts on F 2 as a subspace of ( F 2
) 3 , but does

not leave it invariant. As a matter of fact, e 2 itH F 2 , ( F 2 ) 3 . Analogously,

for t , 0, e 2 itH F + , ( F +) 3 , but e 2 itH does not leave F + invariant.

In the next section, we shall discuss the need for this splitting in the

presence of resonance poles and its consequences from the point of view of

the theory of irreversibility.

Using (3.5), we obtain [11 ]

for t . 0, ^ eitH f 2 ) v 2 & 5 e 2 it v ^ f 2 ) v 2 & (3.6)

for t , 0, ^ eitH f + ) v + & 5 e 2 it v ^ f + ) v + & (3.7)

The expressions for ^ eitH f 6 ) z 6 & can be obtained through analytic continuation.

Thus, we arrive at the obvious conclusion that

for t . 0, ^ eitH f 2 ) z 2 & 5 e 2 itz^ f 2 ) z 2 & (3.8)

for t , 0, ^ eitH f + ) z+ & 5 e 2 itz^ f + ) z+ & (3.9)

which implies that

for t . 0, e 2 itH ) z 2 & 5 e 2 itz) z 2 & (3.1 0)

for t , 0, e 2 itH ) z+ & 5 e 2 itz) z+ & (3.11)
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These formulas have an obvious consequence, which shows the nature

of these generalized states: if Im z , 0, ) z 2 & decays exponentially as t goes

to infinity. However, if Im z . 0, ) z 2 & grows exponentially as t ® ` and
therefore it is not defined in this limit. This strange behavior for ) z 2 & with

Im z . 0 would lead us to assume, at first sight, that this mathematical object

is physically anomalous and should not be considered. Nevertheless, we shall

see that it may be an interesting object. Equation (3.9) says that ) z+ & grows

exponentially if Im z , 0 as t ® 2 ` and decays exponentially if Im z . 0

as t ® 2 ` . The first case is physically relevant in the sense that it represents
the exponentially growing part of the creation of a resonance or capture state.

The second is called the anomalous decaying Gamow vector.

We can also write the complex conjugate of (3.2):

^ H f 6 ) z 6 & * 5 z* ^ f 6 ) z 6 & * 5 z* ^ z 6 ) f 6 & (3.12)

^ H f 6 ) z 6 & * 5 ^ z 6 ) H f 6 & 5 ^ z 6 ) H ) f 6 & (3.13)

Combining (3.12) with (3.13), we obtain the formula for the left eigenvec-
tors of H with eiegenvalue z*:

^ z 6 ) H 5 z* ^ z 6 ) (3.14)

If we use the manipulations in (3.12) and (3.13) in (3.8) and (3.9), we
also get the following result:

for t . 0, ^ z 2 ) eitH 5 eitz* ^ z 2 ) (3.15)

for t , 0, ^ z+ ) eitH 5 eitz* ^ z+ ) (3.16)

and therefore

for t , 0, ^ z 2 ) e 2 itH 5 e 2 itz* ^ z 2 ) (3.17)

for t . 0, ^ z+ ) e 2 itH 5 e 2 itz* ^ z+ ) (3.18)

We see that when Im z Þ 0, if the left eigenvector of H grows, the

corresponding (right) eigenvector decays and vice versa. We will come back
to this subject when we discuss the properties of the Gamow vectors in the

next section.

Final Remarks. 1. We make a brief comment on the nature of the left

eigenvectors of H. Let F , * , F 3 be a RHS and F an element of F 3 .

We can define a mapping F 8 from F into the set of complex numbers

as follows:

F 8( w ) 5 [F( w ) ]* for all w P F (3.19)

It is obvious that F 8 is a continuous linear functional on F . Thus, (3.19)

gives a one-to-one onto mapping between F 3 and the space F 8 of continuous
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linear functionals on F . Then, observe that ^ z 6 ) f 6 & 5 ^ f 6 ) z 6 & * is a particular

case of (3.19) and, therefore, ^ z 6 ) are the continuous linear functionals on F 6

that correspond to the continuous antilinear functionals ) z 6 & through (3.19).
2. To end this section, we comment on the possible relation between

) z+ & and ) z 2 & . First, one sees that the intersection ( F +) 3 ù ( F 2 ) 3 must contain

at least the Hilbert space *. One may ask the following question: since the

actions of both ) z+ & and ) z 2 & give on the vectors f + and f 2 , respectively, the

value of the analytic continuation of their respective wave functions, given

by ^ v + ) f + & and ^ v 2 ) f 2 & , at z, is it possible to identify both functionals on
( F +) 3 ù ( F 2 ) 3 ? The fact that they both are generalized eigenvectors of H
with the same eigenvalue reinforces this possibility. Nevertheless, the answer

is no, as we see here:

If f 6 P F 6 , its wave function in the energy representation belongs to

G 7 . This means that it has an analytic continuation to an entire function

which is Hardy class on the {upper
lower} half-plane. Let us take z P C +, the upper

half of the complex plane (Im z . 0). As we have established, the triplets

F 6 , * , ( F 6 ) 3 are equivalent to the triplets D 7 , *2
6 , D 3

7 , respectively,

in the sense that F 6 and D 7 are isomorphic from both the algebraic and

topological points of view and the same happens with their duals. Therefore,

) z+ & and ) z 2 & are equal if and only if their corresponding elements in D 3
7

are equal.

What are these elements? To find them, let us recall that the wave

function associated to f 6 is given by f 6 ( v ) 5 ^ v 6 ) f 6 & P G 7 , with v . 0,

in the energy representation. The relations between G 7 and D 7 are given by

the operators u 7 as u 2 1
7 f 6 ( v ) : 5 h 6 ( v ) P D 7 . The functions h 6 ( v ) coincide

with f 6 ( v ) for v $ 0. For any other value v 8, h 6 ( v 8) represents the value
of the analytic continuation of f 6 ( v ) at v 8. The functionals that we are

looking for, ) F 6 & , are defined as

^ f 6 ) z 6 & 5 [f 6 (z*) ]* 5 ^ h 6 ) F 6 & (3.2 0)

We know that f 2 ( v ) P G + implies that [f +( v ) ]* P G 2 . Equivalently,

h 2 ( v ) 5 u 2 1
2 f 2 ( v ) P D + Þ [h 2 ( v ) ]* P D 2 . If Im z . 0, the Tichmarsh

theorem [29 ] gives

[h 2 (z*) ]* 5
1

2 p i #
`

2 `

[h 2 ( v ) ]*

v 2 z*
d v (3.21)

The right-hand side of (3.21) represents the following scalar product on the

Hilbert space L2( R ):

[h 2
(z*) ]* 5 1 h 2

( v ),
1

2 p i

1

v 2 z* 2 5 ^ h 2 ) F 2 & (3.22)
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Thus,

) F 2 & 5
1

2 p i

1

v 2 z*
P L2( R ) (3.23)

Analogously, if f +( v ) P G 2 Þ [h+( v ) ]* P D +. Since Im z* , 0, the
Tichmarsh theorem reads in this case

2
1

2 p i #
`

2 `

[h+( v ) ]*

v 2 z*
d v 5 0 (3.24)

and, therefore, ) F + & cannot be represented by the same vector as ) F 2 & in

(3.23), since ^ h+ ) F + & is different from zero in general.

4. THE GAMOW VECTORS AND THEIR BRACKETS

Here we deal with a scattering resonant system [9]. Resonant scattering

can be described as follows: A state is prepared in the remote past and evolves

freely. As it enters an interaction region governed by a potential V, at least

one metastable state is created.4 At time t 5 0, this metastable state ceases

to be formed and starts to decay. Then, it is represented by the vector c + 5
c +( 0). For times t , 0, c +(t) 5 e 2 itH c +, evolves under the action of the total

Hamiltonian H 5 H 0 1 V.

The corresponding asymptotically free vector [9, 13, 31 ] is given at t 5
0 by c in. For t , 0, we have the outgoing state c 2 (t). Its time evolution is

governed again by H. As the outgoing state leaves the interaction region, it

can be observed in the far future as the free vector c out(t). At t 5 0, this free
outgoing vector would be c out 5 c out( 0). The relations between these vectors

are c + 5 c 2 , V + c in 5 c +, V 2 c out 5 c 2 , and c out 5 S c in.

What we really observe is not c out, but rather the projection of c out into

the region in which the detector is placed. The state resulting from this

procedure is called w out [3 0].

Now, we make our fundamental Ansatz: c in P F + and w out P F 2 , which
is justified by the denseness of F + and F 2 in *. Denseness implies that,

given an arbitrary vector in *, we always can choose another vector in the

dense subspace such that the difference between them is negligible. Our

Ansatz implies that c + P F + and w 2 P F 2
.

The transition amplitude between c out and w out is given by

( w out, S c in) 5 ( w 2
, c +) 5 #

`

0

S( v 1 i0) ^ w 2 ) v 2 & ^ v + ) c + & d v (4.1)

The integral in (4.1) can be decomposed in terms of an integral along

4 For the sake of simplicity we introduce only one metastable state or pole.



Gamow Vectors and Time Asymmetry 2837

the negative part of the real axis in the second sheet plus a pole term

corresponding to the residue of the function under the integral sign on the

pole of SII( v ) on the lower half-plane (second sheet). This decomposition
has already been described.

Now, we introduce the so called ª G curveº that encloses both poles zR

and z*R as depicted in Fig. 2. Due to the Cauchy theorem, the integral in (4.1)

can be written as

( w 2 , c +) 5 2 2 p i{a*0 ^ w 2 ) z*R & ^ z 1
R ) c + & 1 a 0̂ w 2 ) z 2

R & ^ z* 1
R ) c + & }

1 # G

SII(z) ^ w 2 ) z 2 & ^ z* 1 ) c + & dz (4.2)

where a0 is the residue of SII(z) at zR. Its complex conjugate a*0 is the residue

of SII(z) at z*R [9, 11 ]. Without loss of generality, one also may assume that

c in may be any vector in F + and that w out is any vector in F 2 , which implies

that w 2
and c + can be arbitrarily chosen in F 2

and F +, respectively. If we omit
these two vectors, we can write (4.2), after a redefinition of the functionals that

absorbs the constants, as

I 5 ) z* 2
R & ^ z 1

R ) 1 ) z 2
R & ^ z* 1

R ) 1 # G

SII(z) ) z 2 & ^ z* 1 ) dz (4.3)

Since F + and F 2 are both contained in *ac, which is contained in both

Fig. 2.
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( F +) 3 and ( F 2 ) 3 , then F + , ( F 2 ) 3 and F 2 , ( F +) 3 . Thus, the identity in

(4.3) can be interpreted as the canonical mapping I: F + j ( F 2
) 3 , which

maps any vector in F + into the same vector considered as an element of
( F 2 ) 3 . The formal product of (4.3) by H either to the right or to the left gives

H 5 z*R ) z* 2
R & ^ z 1

R ) 1 zR ) z 2
R & ^ z* 1

R ) 1 # G

zSII(z) ) z 2 & ^ z* 1 ) dz (4.4)

We have already studied the behavior of state vectors of the kind ) z 6 &
and ^ z 6 ) . When z 5 zR or z 5 z*R the state vectors ) z 2

R & and ) z* 1
R & have a clear

physical meaning.5 They are the vectors that describe the exponentially

decaying and the exponentially growing part of a resonance [9,11 ]. Formula
(4.4) is a generalized spectral decomposition of the total Hamiltonian in terms

of projections including these vectors. They are called the decaying and the

growing Gamow vectors, respectively. The operators in the spectral decompo-

sitions of (4.3) and (4.4) are truly (non-self-adjoint) projections, as we shall

show in the sequel. In order to do that, we need to define certain brackets.

They have a correct meaning as distributional kernels and can be obtained
as follows: Let us multiply (4.3):

(i) To the right by ) z 2
R & ,

) z 2
R & 5 ) z* 2

R & ^ z 1
R ) z 2

R & 1 ) z 2
R & ^ z* 1

R ) z 2
R & 1 # G

SII(z) ) z 2 & ^ z* 1 ) z 2
R & dz (4.5)

which says that

^ z 1
R ) z 2

R & 5 0 ; ^ z* 1
R ) z 2

R & 5 1; ^ z* 1 ) z 2
R & 5 0 (4.6)

(ii) To the right by ) z* 2
R & ,

) z* 2
R & 5 ) z* 2

R & ^ z 1
R ) z* 2

R & 1 ) z 2
R & ^ z* 1

R ) z* 2
R & 1 # G

SII(z) ) z 2 & ^ z* 1 ) z* 2
R & dz (4.7)

which implies that

^ z 1
R ) z* 2

R & 5 1; ^ z* 1
R ) z* 2

R & 5 0 ; ^ z* 1 ) z* 2
R & 5 0 (4.8)

(iii) To the left by ^ z* 1
R ) , we obtain

; ^ z* 1
R ) z 2 & 5 0 (4.9)^ z* 1

R ) z* 2
R & 5 1; ^ z* 1

R ) z 2
R & 5 0

(iv) To the left by ^ z* 1
R ) , we get

5 This is not the case for ) z* 2
R & and ) z 1

R & .



Gamow Vectors and Time Asymmetry 2839

^ z* 1
R ) z* 2

R & 5 0 ; ^ z* 1
R ) z 2

R & 5 1; ^ z* 1
R ) z 2 & 5 0 (4.1 0)

Observe that (4.9) and (4.1 0) provide us with the same formulas as (4.6) and

(4.8). Hence, multiplication by the right does not give us any new result.
To obtain the desired new results, one should consider the scalar product

given by

( c +, w 2
) 5 #

`

0

S( v 2 i0) ^ c + ) v + & ^ v 2 ) w 2 & d v

5 2 p i{a 0̂ c + ) z* 1
R & ^ z 2

R ) w 2 & 1 a*0 ^ c + ) z 1
R & ^ z* 1

R ) w 2 & }

1 # GÄ

SII(z) ^ c + ) z* 1 & ^ z 2 ) w 2 & dz (4.11)

which is the complex conjugate of (4.2). The curve GÄ is depicted in Fig. 3.

It lies in the second sheet. The first integral in (4.11) is extended over the

lower rim of the cut.

As we deal with the second sheet only, we can forget about the Riemann

surface and work on a complex plane. The function given by SII(z) has, in

addition to the resonant poles, a branch cut along the positive part of the
real axis. The boundary values of SII(z) on R + from above coincide with

Fig. 3.
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S( v 2 i0) and those from below with S( v 1 i0), a situation opposite to that

in the first sheet.

Equation (4.11) can be written formally, after reabsorbing constants, as

I 5 ) z* 1
R & ^ z 2

R ) 1 ) z 1
R & ^ z* 2

R ) 1 # GÄ

SII(z) ) z* 1 & ^ z 2 ) dz (4.12)

I is the canonical mapping I: F 2 j ( F +) 3 defined as in the previous

case. Note that (4.12) is the adjoint of (4.3) in some sense. If, as before, we

apply this expression to the Gamow vectors, we obtain new brackets. Thus,

if we multiply:
(i) To the right by ) z* 1

R & , we get

) z* 1
R & 5 ) z* 1

R & ^ z 2
R ) z* 1

R & 1 ) z 1
R & ^ z* 2

R ) z* 1
R & 1 # GÄ

SII(z) ) z* 1 & ^ z 2 ) z* 1
R & dz (4.13)

which gives

^ z 2
R ) z* 1

R & 5 1; ^ z* 2
R ) z* 1

R & 5 0 ; ^ z 2 ) z* 1
R & 5 0 (4.14)

(ii) Formal multiplication to the right by ) z 1
R & gives analogously

^ z 2
R ) z 1

R & 5 0 ; ^ z* 2
R ) z 1

R & 5 1; ^ z 2 ) z 1
R & 5 0 (4.15)

(iii) Multiplication to the left by ^ z 2
R ) and ^ z* 2

R ) leads again to (4.14)

and (4.15).

After (4.12), the adjoint of (4.4) is given by

H 5 z*R ) z* 1
R & ^ z 2

R ) 1 zR ) z 1
R & ^ z* 2

R ) 1 # GÄ

zSII(z) ) z* 1 & ^ z 2 ) dz (4.16)

As mentioned earlier, the brackets that we have found so far have a

rigorous meaning in terms of distributions. They allow us to show that the

spectral decompositions of H given by (4.4) and (4.16) are written in terms

of projections. The property that defines a projection is idempotency: P 2 5 P .

Thus, take, for instance, P 5 ) z* 2
R & ^ z 1

R ) . Then, using the first identity in
(4.8), we have

P 2 5 ) z* 2
R & ^ z 1

R ) z* 2
R & ^ z 1

R ) 5 P (4.17)

The idempotency of ) z 2
R & ^ z* 1

R ) , ) z* 1
R & ^ z 2

R ) , and ) z 1
R & ^ z* 2

R ) is proven analogously.
These projections are, in principle, good candidates for being density states

for resonance states or Gamow densities. We discuss briefly this point later.

The integral term in (4.3) and (4.12) has similar properties. Let us study

briefly this term in (4.3). An analogous study can be done for (4.12). Let

us define



Gamow Vectors and Time Asymmetry 2841

) fz & : 5 ! SII(z) ) z 2 & and ) fÄ z & : 5 ! SII(z)z*
1 & (4.18)

Then, (4.3) can be written as

I 5 ) z* 2
R & ^ z 1

R ) 1 ) z 2
R & ^ z* 1

R ) 1 # G

) fz & ^ fÄ z) dz (4.19)

Multiplying to the right (4.19) by ) f v & where v P G, we obtain

) f v & 5 ) z* 2
R & ^ z 1

R ) f v & 1 ) z 2
R & ^ z* 2

R ) f v & 1 # G

) fz & ^ fÄ z ) f v & dz (4.2 0)

which means that

^ z 1
R ) f v & 5 0; ^ z* 2

R ) f v & 5 0; ^ fÄ z ) f v & 5 d G(z 2 v ) (4.21)

The meaning of the delta in (4.21) is obvious. These formulas imply that

^ z 1
R ) z 2 & 5 ^ z* 2

R ) z 2 & 5 0 (4.22)

If we multiply (4.19) to the left by ^ fÄ v ) , we obtain

^ z* 1 ) z* 2
R & 5 ^ z* 1 ) z 2

R & 5 0 (4.23)

Similar manipulations with (4.12) give

^ z 2
R ) z* 1 & 5 ^ z* 2

R ) z* 1 & 5 0 (4.24)

^ z 2 ) z* 1
R & 5 ^ z 2 ) z 1

R & 5 0 (4.25)

To define new brackets, one should perform more formal operations of the

same type. Let us multiply (4.4) to the right by ) z 1
R & and to the left by ^ z 1

R ) .
We obtain

zR ^ z 1
R ) z 1

R & 5 z*R ^ z 1
R ) z* 2

R & ^ z 1
R ) z 1

R & 1 zR ^ z 1
R ) z 2

R & ^ z* 1
R ) z 1

R &

1 # G

zSII(z) ^ z 1
R ) z 2 & ^ z* 1 ) z 1

R & dz (4.26)

which, after (4.6), (4.8), and (4.9) gives

^ z 1
R ) z 1

R & 5 0 (4.27)

because then the right-hand side of (4.26) is equal to z*R ^ z 1
R ) z 1

R & and this gives
directly ^ z 1

R ) z 1
R & 5 0. With manipulations of the same type, we obtain

(4.28)^ z 2
R ) z 2

R & 5 0; ^ z* 2
R ) z* 2

R & 5 0; ^ z* 1
R ) z* 1

R & 5 0
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Formulas (4.27) and (4.28) are compatible with an idea, original to

Nakanishi [32 ] and mentioned by other authors [25, 33, 34, 12], according

to which Gamow vectors should have a zero norm. In Hilbert space, only
the zero vector can have zero-norm. Therefore, those authors are not talking

about a norm in the usual sense. Roughly speaking, the argument goes

as follows:

0 5 ^ z 2
R ) (H 2 H ) ) z 2

R & 5 (z*R 2 zR) ^ z 2
R ) z 2

R & (4.29)

Since zR has nonzero imaginary part, this implies that ^ z 2
R ) z 2

R & 5 0 from a

formal point of view. This argument assumes implicitly that ) z 2 & belongs
to the domain of the operator H, which is false. In any case, Nakanishi’ s

demonstration is incomplete, since no definition was given at that time for

the new eigenstate. We must insist that these brackets are not scalar products

in the usual sense. The rigorous nature of these brackets is the subject of our

investigations and may be related to a generalized concept of trace on rigged

Liouville spaces.
For the sake of completeness we will formally compute the missing

products ^ z* 1
R ) z 1

R & , ^ z* 2
R ) z 2

R & , ^ z 1
R ) z* 1

R & , ^ z 2
R ) z* 2

R & . [Note that ^ z* 1
R ) z 1

R & 5
^ z 1

R ) z* 1
R & * and ^ z* 2

R ) z 2
R & 5 ^ z 2

R ) z* 2
R & *. ]

In (4.14) we obtained that ^ z 2
R ) z* 1

R & 5 1. Now, if we insert the identity

I as in (4.3) and use again the identities (4.14), we have that

1 5 ^ z 2
R ) z* 2

R & 5 ^ z 2
R ) z* 2

R & ^ z 1
R ) z* 1

R & (4.3 0)

The symmetry between decaying and growing processes implies that

^ z 2
R ) z* 1

R & 5 6 ^ z 1
R ) z* 1

R & (4.31)

Then, (4.3 0) and (4.31) imply

^ z 2
R ) z* 2

R & 5 6 1 or 6 i (4.32)

and therefore

) ^ z 2
R ) z* 2

R & ) 5 1 (4.33)

The formalism does not fix the phases, which we conventionally take to be

equal to zero. Thus, ^ z 2
R ) z* 2

R & 5 1. Analogously, ^ z 1
R ) z* 1

R & 5 1

Final Remark. Consider formula (4.1) in which we omit w 2 and c +:

I 5 #
`

0

S( v 1 i0) ) v 2 & ^ v + ) d v (4.34)

and also [see (2.8) ]
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I 5 #
`

0

) v + & ^ v + ) d v (4.35)

These identities are not equivalent. The first one is the identity I: F + j

( F 2 ) 3 and the second one is I: F + j ( F +) 3 . Due to this difference, one

cannot, in principle, identify ) v + & with S( v 1 i0) ) v 2 & . However, since the

operator S is untary, the identity ) v + & 5 S( v 1 i0) ) v 2 & could have an
interpretation within the following context: Since f+ P F + represents an

incoming free vector, one should find an outgoing free vector f 2 such that

f 2 5 Sf+. Then, one may define S ) v + & as

^ f 2 ) S ) v 2 & 5 ^ Sf+ ) v + & , " f+ P F + (4.36)

In order to define correctly the arguments in (4.36), we must have that

f 2 5 Sf+ P F 2 , which again implies that G 2 5 S( v 1 i0) G +. This cannot

be true in general, and hence ) v + & 5 S ) v 2 & is false in general. S F + is a space

which is different from F 2 . This does not represent a difficulty for our
formalism due to the denseness of both spaces as we have argued elsewhere.

The functional S( v 1 i0) ) v 2 & lies in the space (S F +) 3 .

However, the formula ) v 2 & 5 S( v 1 i0) ) v + & has a well-defined meaning

on F + ù F 2 [34].

5. TIME EVOLUTION OF THE GAMOW STATES.
IRREVERSIBILITY

The formulas giving the time evolution of the Gamow states are a

direct consequence of some formulas obtained in Section 3. For the sake of

completeness, let us write here the relevant equations concerning the Gamow

vectors. The first two among these equations can be obtained as a particular
case of (3.1) just by replacing z and z* by zR and z*R , respectively. We have

H ) z* 6
R & 5 z*R ) z* 6

R & ; H ) z 6
R & 5 zR ) z 6

R & (5.1)

Analogously, as a particular case of (3.14), we have

^ z 6
R ) H 5 z*R ^ z 6

R ) ; ^ z* 6
R ) H 5 zR ^ z* 6

R ) (5.2)

We recall that the points zR and z*R are the pair of poles on the second sheet

of the S-matrix in the energy representation which define the resonance.
Thus, zR 5 ER 2 (i G R)/2, z*R 5 ER 1 (i G R)/2, where ER represents the reso-

nant energy and G R the width, so that 2/ G R is the mean life of the reso-

nance state.

The time evolution of the Gamow vectors is obtained from formulas

(3.15)±(3.18). For t . 0, we have
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) z 2
R (t) & : 5 e 2 itH ) z 2

R & 5 e 2 izRt ) z 2
R & 5 e 2 iER te 2 G R t/2 ) z 2

R & , t . 0 (5.3)

As we can see from (5.3), ) z 2
R (t) & decays exponentially with time. Thus,

it is the state vector for the exponentially decaying state, which was created

up to t 5 0. It is called the decaying Gamow vector for the resonance at zR.
Analogously, for t . 0, we have

) z* 2
R (t) & : 5 e 2 itH ) z* 2

R (t) & 5 e 2 itER e G R t/2 ) z* 2
R & , t . 0 (5.4)

This vector blows up as t j ` . We call it the anomalous growing Gamow

vector. The word anomalous stresses the fact that this vector grows exponen-

tially for positive values of time.

It is also very interesting to point out that the time evolution of the
vectors ) z 2

R & and ) z* 2
R & is not defined for t , 0. The reason is clear: e 2 itH

cannot be extended to the dual space ( F 2 ) 3 [1 0].

For t , 0, we have

) z* 1
R (t) & : 5 e 2 itH ) z* 1

R (t) & 5 e 2 itER e G R t/2 ) z* 1
R & , t , 0 (5.5)

Thus, ) z* 1
R (t) & grows exponentially with time up to t 5 0. It is the exponentially

growing Gamow vector. It represents the state of a forming resonance, which
ceases to be formed at t 5 0 [8 ]. It is interesting to note that the time behavior

of the anomalous growing Gamow vector ) z* 2
R (t) & is the continuation to t .

0 of the time behavior in the region t , 0 of ) z* 1
R (t) & . In this sense, the

anomalous growing Gamow vector is the unphysical continuation of the

physical growing Gamow vector. The anomalous growing Gamow vector is

therefore a mathematical object that appears in the spectral decompostions,
although it does not occur in nature. We shall find some use for this vector

in Section 7.

Analogously, for t , 0, we have

) z 1
R (t) & : 5 e 2 itH ) z 1

R (t) & 5 e 2 iER t e 2 G R t/2 ) z 1
R & , t , 0 (5.6)

This vector blows up as t j 2 ` . It is called the anomalous decaying Gamow

vector. It decays as time grows up to t 5 0. As for the case of the anomalous
growing Gamow vector and in the same sense, the anomalous decaying

Gamow vector is the unphysical continuation to t , 0of the physical decaying

Gamow vector ) z 2
R (t) & defined for t . 0 only. It also will be used below.

Time evolution for the Gamow vectors ) z* 1
R (t) & and ) z 1

R (t) & is well defined

for t , 0 only, since e 2 itH cannot be extended to ( F +) 3 for t . 0.

Resonance states appear with resonances characterized as pairs of poles
on the second sheet of the S-matrix in the energy representation. Therefore,

they are physically relevant if and only if resonances are present. Only when

resonances exist do the dual spaces ( F 2 ) 3 and ( F +) 3 acquire full meaning

and they are necessary. In fact, the Gamow vectors ) z* 1
R & and ) z 2

R & representing
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resonance states cannot exist in a Hilbert space [10]. We have seen that on

these dual spaces the evolution group e 2 itH splits into two semigroups, one

corresponding to the past t , 0 and the other to the future t . 0. Since the
splitting is a mathematical formulation for time asymmetry and irreversible
evolution, we have extended a formulation for irreversibility in quantum

systems with resonances [25, 34 ]. The connection between this irreversibility

and entropy increasing will be sketched later.

The choice of the spaces F 2
and F + is essential in this formalism. In

this choice, Hardy functions play a fundamental role. In view of this situation,
the following question arises: why Hardy functions? The answer lies in the

very nature of a scattering phenomenon and was formulated by Bohm, and

Antoniou [13] and Bohm et al. [31 ]. The main purpose of these authors was

to define a quantum arrow of time for scattering experiments. In this kind

of experiment they are essentially three kinds of processes: preparation of

an incoming free state, scattering with a center of forces, and registration of
the projection of the outgoing free state into the region occupied by the

registration apparatus. Then, one chooses the time t 5 0 as the time at which

all preparations have been completed and after which the registration begins

(see Section 8). In particular, this means that the incoming wave function

must be zero for t . 0, which implies that for t . 0 [13]

0 5 #
`

2 `

d v ^ v + ) w in(t) & 5 #
`

2 `

d v e 2 it v ^ v + ) w + & , t . 0 (5.7)

where v denotes the enrgy. Then, the Paley±Wienner theorem [51] shows

that (5.7) implies that ^ v + ) w + & (with 2 ` , v , ` ) is a Hardy function.

Since no preparations take place after t 5 0, the outgoing state vector
c out(t) is zero for t , 0. Using the same arguments, one sees that ^ v 2 ) c 2 &
must be a Hardy function.

We see that the above arguments are closely connected with causality.

Therefore, causality arguments determine the use of Hardy functions. This

is not new, since the use of *p functions in descriptions of scattering processes
has been motivated through causality conditions [13, 31 ]. Note that they also

appear in the Lax±Phillips theory of scattering [36 ].

We can also find the time evolution for the left eigenvectors in an

analogous manner as we found the time evolution for the right eigenvectors.

This time evolution is given by means of the following formulas:

For t . 0

^ z 2
R (t) ) : 5 ^ z 2

R ) eitH 5 eiz*
R t ^ z 2

R ) 5 eiER t e G R t/2 ^ z 2
R ) (5.8)

^ z* 2
R (t) ) : 5 ^ z* 2

R ) eitH 5 eiER t e 2 G R t/2 ^ z* 2
R ) (5.9)
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For t , 0

^ z* 1
R (t) ) : 5 ^ z* 1

R ) eitH 5 eitER e 2 G Rt/2 ^ z* 1
R ) (5.1 0)

^ z 1
R (t) ) : 5 ^ z 1

R ) eitH 5 eiER t e G R t/2 ^ z 1
R ) (5.11)

To finish this section, let us make some comments on the formulation

of decaying states in terms of density matrices. Consider a radiative sample.

It is an unstable system tending toward a state of equilibrium. In the state

of equilibrium all the atoms in the sample have already decayed. From a

phenomenological point of view, the time evolution of the state of the sample

should have the following form:

r (t) 5 r
*

1 r 1e
2 G t (5.12)

where r
*

denotes the state of equilibrium of the sample and the second term

in the right-hand side of (5.12) is a correction to the equilibrium that vanishes
exponentially with a mean life G 2 1. The equilibrium state r

*
as well as r (t)

must be normalized. However, the term r 1 presents several difficulties. First

of all, to date nobody has consistently defined a density operator for a decaying

state like r 1. Therefore, we do not know how to define a trace for r 1. But if

tr r (t) 5 1 5 tr r
*
, one must have

tr r 1 5 0 (5.13)

Which object would be a good candidate for r 1? Several possibilities

have been proposed for defining a density operator of a decaying state,

none of them totally free of inconsistencies [36, 37 ]. However, an excellent
candidate for a model with one resonance only is

r 1 5 ) z 2
R & ^ z 2

R ) (5.14)

for which the time evolution can be easily defined for t . 0 as

r 1(t) 5 e 2 itH ) z 2
R & ^ z 2

R ) eitH (5.15)

This definition coincides with the standard rule for the quantum evolution
of the states. Thus, using (5.3) and (5.8), we obtain

r (t) 5 r
*

1 e 2 G Rt r 1 (5.16)

Then, we can define the trace of r 1 with the aid of (4.28) so that

tr r 1 : 5 ^ z 2
R ) z 2

R & 5 0 (5.17)

as expected.
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6. TIME REVERSAL AND IRREVERSIBILITY

The Wigner time inversion operator K has the following properties [37 ]:

1. Antilinearity.

2. If Q and P are the position and momentum operators, respectively,

one has

KQK 5 Q; KPK 5 2 P (6.1)

3. If c (x), a function of the position, is the wave function of a given

quantum state, then K c (x) 5 c *(x), where the star denotes complex conjuga-

tion. As a consequence, if w ( v ) represents the same state in the energy
representation, we also have K w ( v ) 5 w *( v ).

4. K2 5 I, the identity, for spin-zero states.

Property 3 implies that K is a one-to-one mapping from G 6 onto G 7 .

One can show that it is also continuous. Then, we can define time-reversal
operators T 6 from F 6 onto F 7 as follows: Consider the operator U defined

in Section 2 and the operators V 6 . Then, we know that the mappings V 6 5
U V ²

6 give an equivalence between topological vector spaces: V 6 : G 7 j F 6 .

Then, one defines T 6 : 5 V 7 KV ²
6 , where V 6 5 V 6 U 2 1. Obviously, this

definition makes the following diagram commutative:

G 7 ®
K

G 6

V 6 ¯ ¯ V 7 (6.2)

F 6 ®
T 6

F 7

Thus, each of the T 6 is a continuous one-to-one mapping from F 6 onto

F 7 . In addition, they have the following properties:

(i) By construction, they are antilinear. Since F 6 are dense in *ac and

their topologies are finer than the topology they have as subspaces of *ac,
T 6 can be extended to antiunitary operators on *ac.

(ii) Their adjoints are given by

T ²
6 5 V 6 K ² V ²

7 5 V 6 KV ²
7 5 T 7 (6.3)

(iii) The operators T+ and T 2 are the inverses of one another:

T+T 2 5 V 2 KV ²
1 V+ KV ²

2 5 I 5 T 2 T+ (6.4)

Now, let us consider an arbitrary f 6 P F 6 . Its wave function in the

energy representation is given by

f 6 ( v ) 5 ^ v 6 ) f 6 & 5 [V ²
6 f 6 ]( v ) P G 7 (6.5)

The definition of T 6 and (6.5) give for any v P R +:
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[T 6 f 6 ]( v ) 5 [V ²
7 T 6 f 6 ]( v ) 5 K(V ²

7 f 6 )( v ) 5 K f 6 ( v ) 5 [f 6 ( v ) ]* (6.6)

Hence,

^ v 7 ) T 6 f 6 & 5 (T 6 f 6 )( v ) 5 [f 6 ( v ) ]* 5 ^ f 6 ) v 6 & (6.7)

If F , * , F 3 is a RHS and T is a continuous antilinear operator on

F fulfilling the properties that linear operators have to do in order to be

extended to the dual (see Appendix A), it can still be extended to a continuous
antilinear operator on F 3 by means of the following formula: If F P F 3

and f P F are arbitrary,

^ T ² f ) F & 5 ^ TF ) f & (6.8)

(6.8) finds its motivation in the definition of the adjoint of an antilinear

operator [38].
Thus, (6.8) gives

^ v 7 ) T ²
6 f 6 & 5 ^ f 6 ) (T 7 ) v 7 & ) 5 ^ f 6 ) v 6 & (6.9)

for any f 6 P F 6 , which yields

T 6 ) v 6 & 5 ) v 7 & (6.1 0)

Now, let us pick any complex z P C . According to (6.7) and (2.15),

one has for the analytic continuation of the wave function of T 6 f 6 at z

^ f 6 ) z* 6 & 5 [f 6 (z) ]* 5 (T 6 f 6 )(z*) 5 ^ z 7 ) T 6 f 6 & (6.11)

Thus,

^ z 7 ) T ²
7 f 6 & 5 ^ f 6 ) (T 7 ) z 7 & ) 5 ^ f 6 ) z* 6 & (6.12)

which yields

T 6 ) z 6 & 5 ) z* 7 & ; " z P C (6.13)

In particular, (6.13) reads for the Gamow vectors

T 2 ) z 2
R & 5 ) z* 1

R & and T + ) z* 1
R & 5 ) z 2

R & (6.14)

In summary, time-reversal operations transform the growing part of a

resonant scattering into the decaying part and vice versa. Growing Gamow

vectors are mapped into decaying Gamow vectors and conversely. The opera-
tor K which acts on the space of wave functions has the same behavior. If
we forget about analytic continuations to the first sheet, which play no role

in the theory of resonances, we see the following: from the point of view of

the Riemann surface, the elements of G 2 are boundary values of Hardy

functions on the lower half-plane of the second sheet and, hence, defined on
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the upper rim of the cut. On the other hand, a similar argument shows that

the functions in G + are defined on the lower rim. Then, K maps functions

on the upper rim into functions in the lower rim and vice versa. This idea
is compatible with the fact that time inversion transforms the linear momentum

p into 2 p and consequently interchanges the rims between themselves. Also,

KS(E 1 i0)K 5 S(E 2 i0), the values of the S matrix on the upper and lower

rims are therefore interchanged. This gives us a coherent picture. To complete

it, let us consider the semigroup e 2 itH with t . 0. One has

T+ eitHT 2 5 V 2 KV ²
1 eitHV+KV ²

2 5 V 2 K eitE KV ²
2

5 V 2 e 2 itE V ²
2 5 e 2 itH ( 5 eitH with t , 0) (6.15)

In (6.15), the second and fourth identities are obvious due to (6.2). The third

one is a consequence of the antilinearity of K. After (6.15), we see that time-

reversal operators interchange the dynamical semigroups corresponding to
the growing and the decaying processes.

Final Remark. This point of view however, is not universally accepted.

In particular, Bohm [56 ] considers that it does not represent a complete

picture of the time reversal for an irreversible phenomenon. Take, for instance,

the following situation: In a scattering experiment the prepared incoming
state is the combination of two uncorrelated (prepared with two independent

apparatuses) plane waves. After scattering with each other, the outgoing state

consists of coherent spherical waves. The time reversal of this process is

another process consisting of preparing a system with two highly correlated

spherical waves (with a fixed relative phase) such that, after collision with

each other, two uncorrelated plane waves result. It is highly improbable if
not impossible to prepare such a state [36 ]. Therefore, in a scattering experi-

ment there exist states for which we cannot prepare their time-reversed states.

According to Bohm’ s point of view, the space F + (or F 3
1 ) is the space

of those states that can be prepared and the space F 2 (or F 3
2 ) represents the

possible observed properties. This picture has been elaborated from previous

ideas of Ludwig on the foundations of quantum mechanics [37] and they lead
to the construction of a quantum arrow of time [31 ]. From the considerations

presented in the previous paragraph, Bohm concludes that F 2 cannot be the

time reversal of F +.

To solve this problem, Bohm recalls that K is not the only candidate

for a time-reversal operator in quantum mechanics. In fact, Wigner has shown

that there exist three other possibilities to define time inversion. They are
related with parity and require a doubling of the space of the states [38, 39 ].

We do not want to discuss here the effects of this doubling of spaces

and how it solves this inconvenience. This discussion is very interesting and,

in our opinion, provides some insight into the problem of time reversal and
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irrversibility. However, it contains a controversial point. In fact, we should

recall that that F 2 is not S F +. As a matter of fact, Bohm’ s argument shows

that F + is not the time reversal of S F +, which, as we wish to insist, is not
F 2 . The fact that F + and F 2 as well as F + and F 2 are time reversals of

each other is a mathematical result that cannot be denied with arguments of

a purely physical character.

7. LYAPUNOV VARIABLES

The formalism we have developed so far permits us to introduce Lyapu-

nov variables, i.e., variables that grow or decrease monotonically in time.

We give three examples

For obvious reasons, we call the first of our Lyapunov variables the

ª survival probability.º In order to define it, let us go back to (4.1). We can

deform the contour of integration to G (see Fig. 3), in order to obtain [9, 10]

( w 2 , c +) 5 2 2 p ia 0̂ w 2 ) z 2
R & ^ z* 1

R ) c + & 1 # G

SII(z) ^ w 2 ) z 2 & ^ z* 1 ) c + & dz (7.1)

If we omit the arbitrary w 2 P F 2
, we can write c + as an element of ( F 2

) 3 ,
using the following formula:

) c + & 5 ) z 2
R & 1 # G

a (z) ) z+ & dz (7.2)

in which we have reabsorbed constants. Here, the meaning of a (z) is obvious
after (7.1). Now, we define at time t 5 0 the amplitude of correlation between

) z* 1
R & and c + as

^ z* 1
R ) c + & 5 ^ z* 1

R ) z 2
R & 1 # G

a (z) ^ z* 1
R ) z 2 & dz (7.3)

Formula (4.1 0) gives ^ z* 1
R ) z 2 & 5 0 (we should always assume that ^ a ) b & 5

^ b ) a & *). Also, (4.1 0) yields ^ z* 1
R ) z 2

R & 5 1. Thus, at t 5 0, the correlation

between c + and ) z* 1
R & is ) ^ z* 1

R ) z 2
R & ) 2 5 1, which gives 1 because of the chosen

normalization. At any time t . 0, the amplitude should be defined as

^ z* 1
R ) e 2 itH ) c + & 5 e 2 itzR ^ z* 1

R ) c + & 5 e 2 itzR ^ z* 2
R ) z 2

R & (7.4)

Note that c + is treated as an element of ( F 2 ) 3 , so that the action of e 2 itH on

c + makes sense. The first identity in (7.4) is a consequence of (5.12). Hence,

the survival probabibily should be defined as

C(t) 5 ) ^ z* 1
R ) e 2 itH) c + & ) 2 5 e 2 G t ) ^ z* 1

R ) z 2
R & ) 2 (7.5)

As is well known, this exponential behavior of the survival probability does
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not occur in ordinary quantum mechanics [40], where one has deviations of

the exponential law at short times (Zeno effect) as well as large times (Khalfin

effect).The function C(t) is our first Lyapunov variable.
In order to construct our second Lyapunov variable, let us apply the

evolution semigroup (t . 0) to c + [ 5 c +( 0) ]:

) c +(t) & 5 e 2 izR t ) z 2
R & 1 # G

a (z)e 2 izt ) z 2 & dz (7.6)

Let us consider the following operator:

M 5 ) z 1
R & ^ z 1

R ) 1 # G
) z+ & ^ z+ ) dz (7.7)

This is an entropy operator in the sense of Misra and Prigogine [41]. Now,

let us define the following function:

Y 5 2 ^ c +(t) ) M ) c +(t) & (7.8)

One finds that

Y 5 2 # G
) a (z) ) 2 dz 2 e 2 G t ) ^ z 1

R ) z 2
R & ) 2 (7.9)

After ref. 41, the Liapunov function Y obeys some properties of the entropy

function and therefore it can be interpreted as a form of entropy [33 ].

A more ambitious goal would be to find contractive evolutions, namely

evolutions with ever-decreasing norm. Then, we can consider this norm as
a Lyapunov variable. These evolutions can be found in Hilbert space * if

we use our generalized vectors. To do this let us define a family of vectors

in space ( F 6 ) 3 ,

) z 6
C & 5 a ) z* 6

R & 1 b ) z 6
R & (7.1 0)

functions of variables a and b . Here, we are using both regular and anomalous

Gamow vectors.
The norm of these vectors reads

^ z 6
C ) z 6

C & 5 a * b ^ z* 6
R ) z 6

R 1 a b * ^ z 6
R ) z* 6

R & 5 2 Re a * b (7.11)

Let us normalize these vectors as 2 Re a * b 5 1 (for a certain time t 5 0

since, as we will see in a moment, this norm is not constant). Let us now

define the projector

P 6
C 5 ) z 6

C & ^ z 6
C ) (7.12)

and compute
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P 6
C ) z 6

R & 5 ) z 6
C & ^ z 6

C ) z 6
R & 5 ) z 6

C & ( a * ^ z* 6
R ) 1 b * ^ z 6

R ) ) ) z 6
R & 5 a * ) z 6

C &

(7.13)

From Eq. (5.3) we then see that

) z 2
C (t) & 5 ( a *) 2 1P 2

C ) z 2
R (t) &

5 ( a *)
2 1P 2

C e 2 iERte 2 1/2 G Rt ) z 2
R ( 0) & (7.14)

5 e 2 iER te 2 1/2 G Rt ) z 2
C ( 0) &

Thus

N 5 ^ z 2
C (t) ) z 2

C (t) & 5 e 2 G Rt ^ z 2
C ( 0) ) z 2

C ( 0) & 5 e 2 G Rt (7.15)

Therefore N is a Lyapunov variable, and ) z 2
C (t) & is a vector with a con-

tractive evolution.

Therefore the formulation of resonances in quantum statistical mechanics

requires a correct definition for resonance states. By correct, we mean free
of inconsistencies. Nevertheless, we do not want to discuss this interesting

problem here because it goes beyond the scope of the preset paper. In any

case, one can see that our brackets as presented in the previous section may

help in this direction

8. SCATTERING AND COSMOLOGICAL IRREVERSIBILITY

Finally, let us sketch the application of our formalism to two very
important examples: scattering and cosmological models. In this way we

shall understand the origin of time asymmetry. Let us begin with an scattering

experiment, depicted in Fig. 4. A set of stable states a1, a2, . . . is transformed

Fig. 4.
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by the scattering process (the black box) in another set of stable states b1,

b2, . . . .

This process can be looked at as reversible if we admit that there is
only a conventional difference between ª inº and ª outº states, i.e., between

past and future. There is no change of entropy in this process, as it is the

usual reversible process that we know from ordinary quantum mechanics

[This can be verified using the Y of (7.9) or N of Eq. (7.7) as the definition

of the entropy. ]

Now, let us cut the black box into two parts by the dotted line drawn
in Fig. 4 at t 5 0. Then, we can consider a first process, depicted in Fig. 5,

where the stable states a1, a2, . . . creates the unstable states u1, u2, . . ., which

are growing states up to the time t 5 0 and therefore belong to space ( F +) 3 ,

like the Gamow vector ) z* 1
R & , Im z*R . 0. Therefore, this irreversible process

will show a decrease of entropy (and this fact also can be verified by making

the obvious changes in the definition of Y as the entropy). This would be
the first half of Fig. 4, namely Fig. 5. We can also consider the second half

of figure 4, namely Fig. 6, where some unstable states, belonging to the

space ( F 2 ) 3 , decay after the time t 5 0 into the stable states b1, b2, . . . .

These decaying states are like ) z 2
R & , Im zR . 0. Therefore there must appear

an increase of entropy, computed as in Eq. (7.9), in this irreversible process,
which compensates the previous reduction of entropy in the creation process.

Thus, we can see again that the ª regularº physical Gamow vectors ) z* 1
R & for

t . 0 and ) z 2
R & for t . 0 correspond to the growing and decaying real states,

while the anomalous Gamow vectors ) z* 2
R & and ) z 1

R & permit us to extend the

Fig. 5.
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Fig. 6.

exponential time evolution of the physical Gamow vectors to t . 0 and t ,
0, respectively.

The difference between Figs. 5 and 6 is just conventional, since one is

just the mirror image of the other. However, while the process in Fig. 4 is

reversible, the processes depicted in Figs. 5 and 6 are irreversible and there

is a clear substantial difference between past and future in each of these

figures. Should only decaying processes exist in the universe, we would
choose F 2 as our quantum space of states and use ( F 2 ) 3 [and forget all

about F + and ( F +) 3 ]. Thus, a substantial difference between past and future

would be established in our model, which can be considered also as produced

by the growing entropy. If the scattering were an isolated process, the choice

between F + and F 2
, or equivalently, the choice between decaying and grow-

ing states contained in ( F 2
) 3 and ( F +) 3 , is really irrelevant since both

situations are identical. In fact, life is the same in both models. We just call

the future the direction of the decay of particles and the entropy growth, and

the past, the opposite direction. But if the scattering process is not isolated,

we can make a difference between preparation and measurement as in Section

5 and an arrow of time appears, although it is clear that it comes from the

exterior of the system and not from the system itself.
The universe is a more complicated system than the one depicted in

Fig. 4. Instead it is a system with a global growing entropy, as it starts with

an initial decaying state at time t 5 0 (the cut box). In fact, from (classical

and quantum) cosmology we know that the universe began in an unstable
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state [42±45 ] as seen in Fig. 7, showing a global branched scattering sys-
tem [46±48 ].

From the diagram we can see that all the arrows can be considered as
states b1, b2, . . . emerging from the corresponding boxes or from the half

box in the far left of the diagram. Therefore they are all outgoing states

contained in F 2 and the corresponding unstable processes are decaying

processes contained in ( F 2 ) 3 . This states are created in the corresponding

box at a time t0 and therefore they can only be extended to times t $ t 0.

Of course, as in the previous case, we have the mirror image model for
the universe (see Fig. 8) (with a global decrease of entropy in this case).

Since the universe is isolated by definition, the choice between the models

of figures 7 and 8 is irrelevant since both figures are really identical and life

is the same in both models. Then, there is really no choice and time asymmetry

appears as a consequence of the asymmetry of diagrams in Figs. 7 and 8.

Today, we have only very elementary models for the universe showing all
these characteristics [49 ]. In any case, we believe that they will show up in

the future in more complete models. As in the scattering process depicted in

Fig. 8, only regular Gamow vectors are used (as well as in Fig. 4) which

represent the decaying processes within the universe and we see again that

Fig. 7.
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Fig. 8.

anomalous Gamow vectors do not appear in nature. They are only useful to

pass from unitary evolution to nonunitary evolution and show the existence

of contractive Lyapunov variables.

Therefore, in a cosmological model, we have reached the essence of the
time asymmetry. It is impossible to break time symmetry using conventional

quantum mechanics in Hilbert spaces. This symmetry can be broken only by

finding in the theory two symmetrical structures and choosing one of these

structures, taking into account that the choice is irrelevant.

Thus, we arbitrarily choose G 3
1 or G 3

2 (or ( F 2
) 3 or ( F +) 3 ) as our quantum

state space for the universe (we have introduced these in this paper as examples
of much more complicated cosmological models like the ones represented

in Figs. 7 and 8). This choice is irrelevant since coincide with the choice

between figures 7 and 8. If we choose G x
2 , following Section 4 we know that

K: G 3
2 j G 3

1 (8.1)

and therefore the time inversion K does not leave invariant the space of

states G x
2 . Thus, physics in the space G x

2 is clearly irreversible. The same
conclusion can be obtained by using the equivalent spaces ( F 2 ) 3 and ( F +) 3

and the time-reversal operators T 6 . The ª master equationº of the theory can

be obtained using the projectors PC or a L -transformation at the density

matrix level [50].
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Once we have fixed the time direction in our cosmological model of

the universe, we can better understand Figs. 5 and 6, which now can be

interpreted just as elementary processes within the universe. It is the universe
which fixes the global arrow of time and which tells the system where is the

preparation and where is the measurement, i.e., its local quantum arrow of

time. Thus, Fig. 5 depicts an open irreversible process, since it represents a

system of particles that receives energy from some exterior source that acceler-

ates the particles, represented by states a1, a2, . . . , and creates the unstable

states u1, u2, . . .. This process is entropy-decreasing. Figure 6 represents a
closed irreversible process, since now the energy is provided by the decay

of the unstable states u1, u2, . . . and the stable states b1, b2, . . . are produced,

with a growth of entropy.

Therefore, entropy grows in trivial irreversible closed systems. More

generally, we can now prove that entropy does not grow only in the subsystems

of the universe in which an irreversible process take place, for example, in
systems like that represented by the dotted box of Fig. 7. The subsystem of

Fig. 7 is nothing else than a scattering experiment plus a decay process. The

latter provides the energy necessary to accelerate the ingoing particles. This

can be described as the minimal model for a nontrivial closed system provided

with its own energy source.
In every closed system, energy is necessary to produce reactions within

the system and the only known way we have in the universe to obtain this

energy it is to extract it from a decaying state (e.g., a battery where a chemical

product decays into a more stable one, a star burning H, etc.). Therefore, in

every closed system with one or several decaying states plus some scattering

processes, the entropy grows and the second law of the thermodynamic holds.
However, this makes sense if we have previously defined a global time

direction for the whole universe only. If not, the second law would

become meaningless.

Remark Although we must remember that the real experiment was the

complete scattering experiment of Fig. 4, we ideally cut this experiment into
two halves in Figs. 5 and 6 to show the nature of the growing state ) z* 1

R & and

the decaying state ) z 2
R & (note that they are what we have called the ª regularº

Gamow states). As these processes are ideal, these states will never be isolated

states in nature (with only one exception, as we shall see). They always

appear together with the ª continuous background.º Then, while the scattering

states are real physical states, the Gamow vectors ) z 2
R & and ) z* 1

R & always
appear as component states and they are never isolated. Considering ) z 2

R & as

an isolated physical state is just a reasonable approximation if we can ignore

the creation process of this unstable state, as would be the case if the lifetime

of the unstable decaying states ) z 2
R & were very large, e.g., the lifetime of some
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isotope, like C14. In this sense even if our formalism in its ª conceptualº

version given in refs. 12, 33, and 46 can be considered as a way to introduce

the time asymmetry, if we restrict ourselves to just the physics of the Gamow
vectors, it turns out to be just an ª effective theoryº obtained when we neglect

the preparation process.

However, there is one situation in which one is forced to ignore com-

pletely the creation process: when our point of departure is the initial state

of the universe. Only in this cosmological situation can the unstable state

represented by the Gamow vector ) z 2
R & be rigorously considered as a isolated

physical state. Furthermore, only in this case do we find the initial state in

the space ( F 2 ) 3 , since we shall consider the period t . 0 only, t 5 0 being

the big bang time. In fact, in ref. 40 it is shown that if the Hamiltonian of

a system is bounded from below, there are no isolated states in Hilbert space.

However, the Hamiltonian of the universe, the Wheeler±De Witt Hamiltonian,

is the only one which is not bounded from below. According to this, the state
of the universe would be the only isolated decaying state of nature. Also,

the universe is completely isolated and is the only system where the arrow

of time is produced by the system itself as here described.
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APPENDIX A

A rigged Hilbert space (RHS) is a triplet of spaces

F , * , F 3 (A.1)

with the following properties:

(i) * is a Hilbert space.

(ii) F is a dense subspace of * with its own complete nuclear topology.

This topology on F is finer than the topology F has as subspace of *. In
particular, this means that the canonical embedding j: F j * given by

j( w ) 5 w for all w in F is a continuous mapping. Nuclearity is a technical

property that enables us to prove the Gel’ fand±Maurin theorem to be pre-

sented below.
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(iii) A functional on a given set is usually defined as a mapping from

this set into the field of complex numbers. We say that F is an antilinear

functional on F if, for any pair of complex numbers a , b and any pair w , c
in F , one has F( a w 1 b c ) 5 a *F( w ) 1 b *F( c ), where the star denotes

complex conjugation. Then, F 3 is the vector space of all continuous antilinear

functionals on F . F 3 has its own topology and * is dense in F 3 with respect

to this topology. Also, the canonical mapping j: * j F 3 is continuous.

Notation. Let F P F 3 and w P F . The action of F on w is usually

expressed as F( w ), which is a complex number. Nevertheless, we prefer to

use the notation F( w ) 5 ^ w ) F & in this paper. This has some adventages. First
of all, it is consistent with the RHS implementation of the Dirac formulation

of quantum mechanics [18±22 ]. This is also consistent with the fact that any

h in the Hilbert space * also belongs to F 3 . The action of h, as a member

of F 3 , on any w in F is given by the scalar product ^ w ) h & .
Let F , * , F 3 be a RHS and A an operator on * such that (i) F

is contained in the domain (subspace of * in which A acts) of A. (ii) A ² w P
F for any w in F , where A ² is the adjoint of A. This property is often expressed

as A ² F , F . (iii) A ² is continuous on F . Then, A can be extended to F 3 ,

and this extension is a continuous (linear) operator on F 3 , by means of

the formula

^ A ² w ) F & 5 ^ w ) AF & , " w P F , " F P F 3 (A.2)

It is customary to make a distinction between the operator A on * and

its extension on F 3 , usually denoted as A 3 . We do not make this distinction
here for the sake of simplicity. It is obvious that if A were self-adjoint,

formula (A.2) would read

^ A w ) F & 5 ^ w ) AF & , " w P F , " F P F 3 (A.3)

Formulas (A.2) and (A.3) define the action of A on any F in F 3 .

Generalized Eigenvectors and Eigenvalues. Let A be an operator on *
fulfilling conditions (i)±(iii) as above. An F P F 3 is called a generalized

eigenvector of A with eigenvalue l if for any w P F , one has

^ A ² w ) F & 5 ^ w ) AF & 5 l ^ w ) F & (A.4)

for all w in F . In this case, one writes AF 5 l F (or A ) F & 5 l ) F & ). Obviously,

if A is self-adjoint, the dagger drops out in (A.4).
The next result is known as the nuclear spectral theorem or Gel’ fand±

Maurin theorem. We do not present it here with its full generality, although this

version is sufficient for most cases of physical interest. The implementation of

the Dirac formulation in terms of RHS mainly rests upon it.
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Theorem (Gel’ fand ± Maurin). Let A1, A2, . . . , AN be a complete set of

commuting observables implemented as self-adjoint operators on a Hilbert

space *. We further assume that these operators have no singular spectrum.
Then, there is a rigged Hilbert space F , * , F 3 such that:

(i) The operators Ai leave F invariant, i.e., Ai F , F , i 5 1, 2, . . . , N.

The A i are continuous on F (they may not be continuous on *) and therefore

can be extended to a continuous operator on F 3 .

(ii) Let s (Ai) be the Hilbert space spectrum of Ai and X 5 s (A1) 3 . . .

3 s (AN), the Cartesian product of these spectra. For any ( a 1, . . . , a N) P X,
there is a vector ) a 1, . . . , a N & in F 3 , unique save for the product times a

constant, fulfilling the following condition:

Ai ) a 1, . . . , a N & 5 a i ) a 1, . . . , a N & , i 5 1, 2, . . . , N (A.5)

(iii) The set of generalized eiegenvectors ) a 1, . . . , a N & , as ( a 1, . . . , a N)

runs over X, is complete in the sense that for any pair of vectors w , c P F ,
one has a measure m on X such that

( w , c ) 5 # X

^ w ) a 1, . . . , a N & ^ a 1, . . . , a N ) c & d m ( a 1, . . . , a N) (A.6)

where, as is customary, ^ w ) a 1, . . . , a N & denotes the action of the functional

) a 1, . . . , a N & P f 3 on the vector w P F and ^ a 1, . . . , a N ) w & 5 ^ w ) a 1, . . . ,

a N & *. As a consequence, if we omit the vectors w and c , we can write

I 5 # X

) a 1, . . . , a N & ^ a 1, . . . , a N ) d m ( a 1, . . . , a N) (A.7)

Also, for any function f( a 1, . . . , a N) on X such that f(A1, . . . , AN) F ,
F , one has the following spectral theorem, valid for any w , c P F :

( w , f (A1, . . . , AN) c )

5 # X

f ( a 1, . . . , a N) ^ w ) a 1, . . . , a N & ^ a 1, . . . , a N ) c & d m ( a 1, . . . , a N) (A.8)

This identity can also be written formally as

f (A1, . . . , AN)

5 # X

f ( a 1, . . . , a N) ) a 1, . . . , a N & ^ a 1, . . . , a N ) d m ( a 1, . . . , a N) (A.9)

As a corollary, one can show that for any self-adjoint operator A on a

Hilbert space *, one can find a RHS, F , * , F 3 , such that:

(i) A F , F 3 and A is continuous on F .
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(ii) For any l P s (A), the Hilbert space spectrum of A, there exists

) l & P F 3 , possibly degenerate, such that A ) l & 5 l ) l & .
(iii) There exists a measure m on s (A) such that

I 5 # s (A)

) l & ^ l ) d m ( l ) (A.1 0)

in the same sense as above. Analogously, if f(A) F , F , one has

f (A) 5 # s (A)

f ( l ) ) l & ^ l ) d m ( l ) (A.11)

It is important to remark that this F is not unique. In fact, if C , * ,
C 3 is another RHS for which A C , C and A is continuous on C , then (ii)

and (iii) hold in C , * , C 3 . This is what we sometimes call the second
version of the Gel’ fand ± Maurin theorem.

We end this appendix with the following remark: The set of generalized
eigenvalues of an operator on a given RHS may or may not coincide with

its Hilbert space spectrum. We give here two examples:

(i) Consider the space S of the infinitely differentiable functions at all

points that vanish at infinity faster than the inverse of any polynomial. The

usual topology on S [27] makes the triplet S , L2( R ) , S 3 a RHS. Consider
the momentum operator P 5 2 i d/dx. The operator P leaves S invariant, is

essentially self-adjoint on S, and is continuous on S. The set of its generalized

eigenvalues coincides with the real line, hence with its Hilbert space spectrum.

(ii) Let $( R ) be the space of all indefinitely differentiable functions at

all points which vanish outside of a bounded interval. $( R ) is endowed with

a topology which makes $(55555) , L2( R ) , $ 3 ( R ) a RHS. The momentum
operator P has on $( R ) the same properties it has on S. Nevertheless, the

set of its generalized eigenvalues coincides with the complex plane.

APPENDIX B. THE SPACES D 6 AND G 6

The objective of the present appendix is to define the spaces D 6 and

G 6 as used in this paper. First of all, let us recall the definition of a Hardy
function (or a Hardy class function) on a half±plane. An analytic function

on the (open) upper half-plane C + 5 {z/Im z . 0} is called a Hardy function if

sup
y . 0 #

`

2 `
) f (x 1 iy) ) 2 dx 5 K , ` (B.1)

The definition of a Hardy class function on the lower half plane C 2 is

analogous. Boundary values of a Hardy function f (z) on the real axis exist
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for almost (with respect to the Lebesgue measure) all points and determine

a square-integrable function f (x) that, reciprocally, uniquely determines all

the values of f (z) on the corresponding half-plane. For this reason, we identify
a Hardy function with the function given by its boundary values on the real

axis R . Spaces of Hardy functions on C 6 are called Hardy spaces and denoted

by *2
6 . For an account on the properties of Hardy functions, we refer the

reader to the literature [51±53].

A Paley±Wiener theorem establishes that the Fourier transform ^ is a

unitary mapping between the following couples of spaces [51, 54 ]:

^: L2(R 2 ) j *2
1

^: L2(R+) j *2
2 (B.2)

Another result states that if f (x) is a function which vanishes outside a

bounded interval and admits derivatives at all points to all orders, its Fourier
transform defines an entire analytic function [54 ].

Let us consider the vector space of all infinitely differentiable functions

which are zero outside a compact interval contained in R + ( R 2 ). We call this

space $( R +) [$( R 2 ) ]. Following the above-mentioned results, ^($( R 6 )) 5
D 7 is a space of functions which are

(i) Entire analytic.
(ii) Hardy functions on the {upper

lower} half-plane.

Let us consider the space $( R ) as defined at the end of Appendix A.

$( R 6 ) are closed subspaces of $( R ) and therefore complete nuclear spaces

[11]. Since the Fourier transform is a one-to-one mapping from $( R 6 ) onto

D 7 , it also may transport the topologies from $( R 6 ) into D 7 . Henceforth,
we will use these topologies for D 6 . These spaces determine two new RHS:

D 6 , *2
6 , D 3

6 (B.3)

A theorem of van Winter [30] says that Hardy functions are determined

by their boundary values on R+. Let us consider f 6 P *2
6 . Then, there exist

one-to-one onto mappings u 6 such that they map f 6 (x) into their restrictions

to R +, considered as different functions. By definition

G 6 5 u 6 D 6 (B.4)

This means that for any g 6 P G 6 , there exists a unique f 6 P D 6 such that

g 6 5 u 6 f 6 and, vice versa, for any f 6 P D 6 , one has u 6 f 6 P G 6 . The

functions u 6 transport the topology from D 6 into G 6 , respectively. Further

properites of G 6 [11, 30] enable us to establish that

G 6 , L2(R+) , G 3
6 (B.5)

are two new RHS. The operator multiplication % defined as %f ( v ) 5 v f ( v )
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leaves G 6 invariant, is essentially self-adjoint on G 6 , and is continuous in

G 6 . Therefore, it can be continuously extended to G 3
6 .

In summary, if g(x) 6 P G 6 :
(i) It is a function defined on the positive part of the real axis R +.

(ii) It can be extended to an entire analytic function.

(iii) It is a Hardy function on the {upper
lower} half-plane.

APPENDIX C

Our purpose in this appendix is to prove that a functional F 6 on F 6

defined as F 6 ( f 6 ) 5 [f 6 (z*)]* is continuous for any z P C , C being the

complex plane. Since the topologies on F 6 and D 7 are identical and the
complex conjugation is always continuous, it suffices to prove that the map-

ping D 6 j C assigning to f 6 P D 6 its value at z is continuous. Here, we

prove the result on D 2 , the proof for D + being identical.

Let f (x) P S. We define

| f | ` 5 sup
x P R

) f (x) ) ; | f |2 5 ! #
`

2 `
) f (x) ) 2 dx (C.1)

One has the following result [27 ]:

| f | ` # H Z Z ddx
f Z Z 2 1 Z Z x2 d

dx
f Z Z 2 J 5 C{ p 01( f ) 1 p21( f )} (C.2)

where

pnm( f ) 5 Z Z xn d m

dxm f Z Z 2 (C.3)

is a family of seminorms defining the topology on S [27].

Now, let f P D 2 and z P C . Following the definition of D 2 given in

Appendix A, there must exist a w (k) P S supported on [0, b ] such that for

z P C

f (z) 5
1

! 2 p #
`

2 `

e 2 ikz w (k) dk 5
1

! 2 p #
b

0

e 2 ikz w (k) dk (C.4)

Taking moduli in (C.4) and using (C.2), one has

) f(z) ) # C sup
k P R

) w (k) ) 5 C| w | ` # C 8{ p 01( w ) 1 p21( w )} (C.5)

The Plancherel theorem says that [27 ]
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Z Z kn d m

dkm w Z Z 2 5 Z Z d n

dxn xm f Z Z 2 (C.6)

Thus,

) f (z) ) # C 8{ p10( f ) 1 2p 01( f ) 1 p12( f )} (C.7)

Since the topology on D 2 is a strict inductive limit of the topologies on

the spaces of Fourier transforms of functions supported on the intervals of

the form [0, bi ], b1 , b2 , . . . bi , . . . j ` , the DieudonneÂSchwartz

theorems [55 ] prove the continuity of our functional.
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